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Simulation Calculation of Dielectric Constants: 
Comparison of Methods on an Exactly Solvable Model 
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A mean spherical model of classical dipoles on a simple cubic lattice of side 
M =  2N+ 1 sites is considered. Exact results are obtained for finite systems 
using periodic boundary conditions with an external dielectric constant ~' and 
using reaction field boundary conditions with a cutoff radius R c ~< N and an 
external dielectric constant e'. The dielectric constant in the disordered phase is 
calculated using a variety of fluctuation formulas commonly implemented in 
Monte Carlo and molecular dynamics simulations of dipolar systems. The 
coupling in the system is measured by the parameter y = 4~#2/9kT, where p2 is 
the fixed mean square value of the dipole moments on the lattice. The system 
undergoes a phase transition at y ~ 2.8, so that very high dielectric constants 
cannot be obtained in the disordered phase. The results show clearly the effects 
of system size, cutoff radius, external dielectric constant, and different measuring 
techniques on a dielectric constant estimate. It is concluded that with periodic 
boundary conditions, the rate of approach of the dielectric constant estimate to 
its thermodynamic limit is a s  N -2/3 and depends only weakly on g'. Methods of 
implementing reaction field boundary conditions to give rapid convergence to 
the thermodynamic limit are discussed. 

KEY WORDS: Spherical model; dipolar systems; dielectric constant; dipolar 
system simulation. 

1. INTRODUCTION 

T h e  c a l c u l a t i o n  of  d ie lec t r ic  c o n s t a n t s  of  d i s o r d e r e d  phases  of  d i p o l a r  

sys tems  has  been  a subjec t  of  l ively d e b a t e  o v e r  the  pas t  15 years.  (~ 17) A 

recen t  rev iew (18) s u m m a r i z e d  m a n y  of  the  a rgumen t s .  T h e  p r o b l e m s  are  to 

c o n v i n c e  a f ini te  s i m u l a t i o n  s ample  tha t  it is pa r t  of  a ve ry  m u c h  l a rge r  

sys tem,  w i th in  tha t  s ample  to e v a l u a t e  f r o m  the  s i m u l a t i o n  an  a p p r o p r i a t e  
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mean square dipole moment, and then to evaluate the dielectric constant 
of the system from that mean square dipole moment. 

The problem of making a finite sample behave like a subsample of a 
larger system is the problem of the electrostatic boundary condition on the 
electric field of the dipoles in the sample. The problem of the mean square 
dipole moment breaks into two questions: (i) The mean square dipole 
moment of what? (ii) How to ensure that a simulation measures a long- 
time average or phase space average correctly? The problem of the route 
from mean square dipole moment averages to the dielectric constant 
requires an internally consistent interpretation of the physical picture of the 
system plus boundary conditions as a macroscopic uniform system. 

Simulation results have so far concentrated on the hard-sphere point- 
dipole system and the Stockmayer system. Other systems have certainly 
been simulated, but these two are regarded as test systems for the methods 
being used. Comparing methods has involved comparing results obtained 
by different methods on the same system at the same (or nearly the same) 
phase points. 

The purpose of this paper is to introduce a simple model of point 
dipoles on a lattice whose statistical mechanics can be solved exactly even 
for finite systems without recourse to simulation. Thus, we can give exact 
results for the dielectric constants (though only numerical ones) and exact 
results for finite systems with different boundary conditions. The behavior 
of the different dielectric constant estimates from a finite system may then 
be compared against an exact result. It is hoped that the comparisons will 
aid evaluation of simulation methods on more complicated systems. 

The boundary conditions we consider can be called PBC(e'), periodic 
boundary conditions with an external dielectric constant ~', and RF(e', Rc), 
reaction field boundary conditions with a cutoff sphere of radius Rc and an 
external dielectric constant e'. 

1.1. Periodic Boundary Conditions: PBC(~' )  

In these boundary conditions we consider a simple cubic simulation 
cell of side length L. We construct a large spherical array of periodic copies 
of the sample which consists of N particles 1 ..... N with dipole moment ~j. 
The array is of radius R 0. A single dipole interacts with every other dipole 
in the sample, and every periodic copy. In addition, the region exterior to 
the spherical array of copies is filled with a continuous dielectric medium 
of dielectric constant e'. The dipole-dipole interaction g~ .T( r~ - - r2 ) ' g  2 

with 

T(r) = - V r V  r lr]-1 (1.1) 
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is replaced in the limit Ro ~ oo by ~4) 

~PBC([11,  r~; 112, r2; d)  = [1~ �9 TvBc(rl, r2; d ) .  [12 

with 

(1.2) 

T p B c ( r l , r 2 ; z ' ) = l v r ~ V r 2 ~ E ( ~  ~-)  
27r 

L3(2g ' + 1 ) 
I (1.3) 

where I is the unit matrix and 

S, erfc(c~ In + Pl) exp(--rc2m2/7 2) ,., . 
+ ~ ~ exp~zrc~m- p) 

rn#0  

is the periodic electrostatic potential. 

(1.4) 

1.2. React ion  Field B o u n d a r y  Condi t ions:  RF(~' ,  Rc) 

In these boundary conditions the interaction of dipole It 1 at r I and [12 
ar r 2 is written as 

~RF( [11 ,  r l ;  !12, r2 ;  g t ) =  {01" TRy(r1, r2; g ' ) " [12  

�9 t , T~v(rl, r2, e ) = T(r12) 
2z(d - 1 ) 

R3c(2e' + 1) 

if IrT21 <R~ (1.5) 
if Ir*2[ >/R,, 

Here, r*2 is the minimum image form of r12 = r l -  r2. This boundary condi- 
tion was introduced by Barker and Watts. (19) A given dipole is considered 
to be in a sphere of radius R c and interacts with all dipoles in that sphere. 
The region outside this sphere is considered to be a dielectric continuum of 
dielectric constant e'. All the dipoles in the sphere polarize this dielectric 
and set up the reaction field on the original particle at the center of the 
sphere. This gives the second term in the first line of Eq. (1.5). 

The dielectric constant of the material of the sample is calculated from 
the polarization response of the system to an infinitesimal applied electric 
field Eo. The way this calculation is done must reflect the macroscopic 
model envisaged by the boundary conditions used. In any case, the 
Hamiltonian in boundary conditions )~ may be written 

1 N N N 

~ ( E o ,  e ' ) = 3 f f + ~ o + ~  ~ Z laj'Tx(ri, rk ;d) '~ tk- -  ~ Eo'[1s (1.7) 
j = l  k = l  j = l  

where 

! (1.6) 
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where ag is the kinetic energy of the configuration and ago is the potential 
energy of the other short-ranged interactions operating between the dipolar 
particles. In the canonical ensemble, the mean polarization of a subregion 

of the sample is 

<Ma>Eo=< 2 ltJ> - ~ d F M a e x p [ - f l ~ ( O ; e ' ) + f l M ' E ~  
j:rjEf2 E0-- ~ dFexp[- f l~(0 ;  e') + tiM "Eo] (1.8) 

Expanding the expectations on the right-hand side of Eq. (1.8) to linear 
terms in Eo and assuming that this mean subregion polarization is zero in 
zero field gives 

( M o ) r o = f l { ( M a M > o -  ( M o > o ( M a > o } ' E o + O ( E  2) (1.9) 

In these expressions M is the polarization of the whole sample. The 
polarization density is then 

p(D)  = flpy#2g()~, t'2, e')" E 0 (1.10) 

where p = N/L 3, y = L3/jfJI, and 

G(;6 f2, e ' )=  (MaM>~ (Ma>~176 (1.11) 
No/t 2 

with No the average number of particles in subregion (2, Ff21 is the volume 
of f2, and/~ is the magnitude of the dipoles. 

For periodic boundary conditions, the whole sample cell is the 
appropriate subregion and then the dielectric constant is given by 

2~' + 1 + 6e'yg(e') 
g = (1.12) 

2d + 1 - 3yg(d) 

where 

1 
g(d) = trace G(PBC, L 3, ~')= ,,--7 <M2> 

Jr# 
(1.13) 

and y = 4~p#2/9kT is a dimensionless coupling parameter. This formula 
was derived by viewing the large array of periodic copies in two ways. The 
first was as a sphere of continuous medium of dielectric constant e 
embedded in a medium of dielectric constant d. A field which was E far 
from the sphere polarized the sphere to give a polarization density PMAC" 
The second was as an empty sphere so that E gave the field E 0 inside the 
sphere into which the array was introduced and the average polarization 
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p(L 3) calculated. The formula for ~ in Eq. (1.12) results from equation 
PMAC and p(L3). 

For reaction field boundary conditions it is not clear what subregion 
f2 to take. Some authors ~1'2'7'1~ have used the whole sample cube ( M M ) ,  
while others (8'9~ have used an average over all the spheres of radius Rc 
about a particle, ( M e M o ) ,  where 

Me  = N,Y"~= k=,Z .k  (1.14) 

0 <  Irjkl < R e  

Perram and Smith (17) have argued that the appropriate response to study 
is that of each cutoff sphere about each particle, so that one should use 
( M o M )  as in Eq. (1.11) here. This is because we can model the cutoff 
sphere about each particle as a continuum sphere in an external field and 
then compare the polarization density for that sphere with that measured 
in a simulation. The dielectric constant is then 

2~' + 1 + 6e' yg(RF, ~') 
= ( 1 . 1 5 )  

2e' + 1 - 3yg(RF, e') 

where g(RF, e ' )=  trace G(RF, SRc, ~'), SRc being the sphere of radius R c 
and 

1 
G(RF, SRc, e ' )=  ,,..---5 ( M o M )  (1.16) 

iv# 

It is clear that there is a great range of methods to be chosen. There 
have been no exact calculations to give any basis for comparison. This 
paper gives some useful exact results. In Section 2 a lattice mean spherical 
model of classical dipoles is introduced and solved exactly for finite systems 
in all of the boundary conditions discussed here. Section 3 presents 
numerical results for the dielectric constant estimate as a function of system 
size, cutoff radius, and external dielectric constant e'. The results and their 
implications for simulation studies are discussed in Section 4. 

2. T H E  M E A N  S P H E R I C A L  M O D E L  

We consider a system on a simple cubic lattice AN= [ - - N , N ]  | 
which has (2N + 1)3 sites. At each site n e A~, there is a three-dimensional 
dipole It(n) e N3. The dipoles can have any magnitude, but the magnitudes 
are subject to the constraint 

( ~ I t2 (n )~=(2N+ 1)3# 2 (2.1) 
n e A  N / 

822/61/1-2-13 
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where # is some fixed dipole magnitude. In boundary conditions (X, ~') the 
partition function for the system is 

x exp { -  �89 ~ 2 It(n)" Tx(n, n'; ~')o It(n') 
no:AN n' EAN 

n ~ A N  

and 2 takes the value that gives 

~ l o g  Er(AN, y ) = 0  (2.3) 

thus ensuring that Eq. (2.1) is satisfied. The parameter y here is 

y = 47t#Z/9kT (2.4) 

which is dimensionless (and corresponds to the standard y parameter for 
a continuum system with p =  1). In fact, the coupling tensors TT(n, n'; e') 
are periodic in all the cases we want to consider. This means that the 
unitary transformation 

l i (k)= ~ It(n)~bN(k,n), V k ~ A  u (2.5) 
n ~ A N  

with 

~N(k,  n) = (2N + 1 ) -3/2 exp[2~ik �9 n/(2N + 1 )] 

will reduce the constraint Hamiltonian to the block-diagonal form 

(2.6) 

f l~z=fl  ~ l~*(k)" [2I+�89 "l~(k)-f12#2(2N+ !) 3 (2.7) 
k ~ A  N 

Here I is the 3 • 3 identity matrix, and the 3 • 3 matrices t z are given by 

t z ( k ; ~ ' ) =  ~ Tx(n,O;~')exp[27rik'n/(2N+l)] (2.8) 
-~AN 

To proceed further, we name the eigenvalues of Tx(k; e') as {t/~(k; Z, e'), 
= 1, 2, 3 } and then we may evaluate the partition function. Equation (2.3) 

then gives 
2re 3 1 1 

Y=-~- Z Z 2+ �89  (2.9) 
k ~ A  N ~ x = l  
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This is the constraint equation for 2 for the mean spherical model and the 
model is solvable by this simple procedure provided 

1 k 2 > - ~q~( ; Z, d), Vk ~ AN, 1 ~< ~ <~ 3 (2.10) 

The distribution functions are simply calculated and are 

(la(n) g(n ' ) )  2re @ e x p [ 2 r c i ( n - n ' ) . k / ( 2 N +  1)] 1 
#2 - 9 y  2 z:, 2+5q~(1 k ; z , d )  ( 2 N + l )  3 

k ~ A  N ~ = l  

(2.11) 

We may now evaluate the various g-factors or fluctuation formulas. First 
we have 

( M M )  ()-~n ~ AN ~t(n) )-'~n, e AN Jt(ll ') ) 
(2N+ 1)3# 2 (2N+ 1)3# 2 

2~ .2.3 1 
 _LI z,  't/2 i2.12) 

and that is all we need for the case when Z is the periodic boundary 
condition PBC(d). 

For the case of reaction field boundary conditions when Z = RF(d, Re) 
we also consider the following two g-factors which, by using the 
orthogonality properties of the unitary transformation, give 

( M a M )  < Z l . i  _< ec it(n) Z . , ~  Ax lx(n' ) )  

(4zc/3) R~ #2 (4rc/3) R~ #2 

= F)~.lnl .< Rc (1) ~ 2~z .3-. 3 1 
/(4~/3)R3~2J ~yy ~,~ 2 + r/=(0; Z, d)/2 (2.13) 

and 

( M o M o )  (EI,,I ~ & It(n) ZI,,,I .< & lt(n')) 

(4rc/3)R3#2 - (4~/3)R~#2 

2re 1 3 1 
- ~ H2(k) Z 2+q~(k;g ,  d)/2 9 (4rC/3)R~#Zk~AN ~=1 

where 

(2.14) 

1 
H(k) 

(2N+ 1) 3/2 Inl ~<Rc 
exp [2rein �9 k/(2N + 1 ) ] (2.15) 
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Each of the above "recipes" [Eqs. (2.12)-(2.15)] has been used in the 
literature to calculate the g-factor. In the next section we use Eq. (2.12) to 
estimate the dielectric constant for PBC(d) and all three formulations to 
estimate the dielectric constant for RF(d, R~). 

3. RESULTS 

For both PBC(d) and RF(d, Re) the values of ~' considered were 
e' = 0, 1, e, e _+ 1, ~ .  The dielectric constant was calculated for values of y 
in the range y = 0.5 to Yc ~- 2.8 for a variety of different N values [in the 
case of PBC(d)] and Rc values [-in the case of RF(d, Rc)]. All values of 
y considered produced results with the same qualitative features. We have 
chosen y = 2.5 in the results presented here. 

In order to analyze the results, it is appropriate to define the following 
two "measures" of the relative error: 

e(e]; N) - e(e~; N) 
A 1(8*1, 82; N ) -  (3.1) e(oo; ~) 

and 

~(,~'; N 1 ) -  ~(,~'; N2) 
A2(d; N1, N2) ~ -  (3.2) 

~(~;  ~ )  

~(d;N) is the dielectric constant. The value of e ( ~ ; ~ )  was where 
estimated from a least squares fit of the linear relationship between e (~ ;  N) 
and N -2. 

3.1. PBC(r 

Figure 1 shows a graph of e (~ ;  N) as a function of N -2 at y = 2.5. 
A least squares fit of e(oo; N) to ~ + f iN -2 gives 

e(oo; N) = 11.72005 - 18.2395N -2 VN>~ 5 (3.3) 

Thus, the limiting value of the dielectric constant is e (~ ;  oo) ~ - 11.72. 
Further, Eq. (3.3) indicates that surface effects have indeed been suppressed 
by using PBC((). Figure 2 shows a graph of Az(d; N, ~ )  as a function of 
N for the six values of d listed above. We note that the dependence on e' 
is very weak indeed. 

3.2. RF(e'; Rc) 

We use the notation MM, M~M,  and M ~ M ~  to indicate which 
g-factor is being used to calculate the dielectric constant. We consider the 
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Fig. 1. Graph of e ( ~ ;  N) versus N -2. 

dielectric constant as a function of cutoff radius R c for different values of 
e' at y = 2 . 5  on a lattice with side L =  33. Figures 3-5 illustrate the 
behavior of the relative dielectric constant A2(e'; Re, oo) under each of the 
three "recipes" as a function of cutoff radius R c. All seven graphs have the 
same horizontal and vertical scales. 

4. D I S C U S S I O N  

The results shown in Section 3 indicate that for PCB(e'), ~(e'; N) is 
' " N )  is less than 10 -3 for side almost independent of #. In fact, Al(e 1, e2, 

0 , 0 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~"  - . 0 2  

' L ' ; . "  4 . ' "  .';. ,L'li%'~;. 
N 

Fig. 2. Graph of A 2(#; N, oo) versus size N for e' = 0, 1, e, e + 1, or. 



196 Morrow and Smith 

length L/> 7. Thus, for most practical applications, the choice of ~' will not 
be important in the case of PBC(a'), provided the boundary conditions are 
implemented correctly. 

On the other hand, a(s'; N) is more sensitive to the choice of the size 
N. The approximate relation given in Eq. (3.3) shows that the convergence 
to the limit is fairly slow as a function of N. In fact, to have zl2(oe; oe, N) 

0 . 2  

6 . 1  

~ 0 . 6  
cs 

<s -I~.1 

e . 2  

i 

~ = 0 . 0  1 

7. 8. 8. ' 0 .  11. 12. 13- 14. 15. ]G. 

C u t o f f "  R ~ ' ; u s  R c 

(a) 

Fig. 3. 

6'2 i 
o 0. ! i 

~o 

<1 - 6 . 1  

03; L L �9 i ~ l  ~ i , 1 a _ ~ _ ,  I , ~ J , , J 
7. 8. 9. ]0 .  11, 12. 13. l a .  15. 16. 

C u t o f f {  R e d l u s  R e 

{b) 
Graphs of xl2(e'; Re, oo) versus R c at different values of ~' using the M M  g-factor. 

(a) e '=0 .0 ,  (b) e ' =  1.0, (c) e ' =  11.72, (d) e ' =  oe. 
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13f 
. 2  

L 

<:~ 9 . 1  

i i , , �9 

C u t o f f  R e d , u s  R^ 

(c) 

L = / 
i 

i I 1 ,I ~ ~ ~ 

2~ . . . .  i ,  t ' ,~, ,~ 
= 

! 

C u t o f f  R ~ J T u s  R c 

(d) 

Fig. 3. (Continued) 

! 

~< 10 - 2  requires N to be greater than 13 (20,000 dipoles). This means that 
for lattice systems at least, obtaining a 1% accuracy for the dielectric 
constant of a system from a simulation will require very much larger 
samples than have typically been used. 

For the case of RF(d; Re) the dependence of the dielectric constant on 
e' is much stronger than for PBC(d). ~'= 1 gives the fastest convergence 
(with cutoff) of the six e' values considered. 
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For MM, Fig. 3 shows that e '=  1 gives the fastest convergence to the 
dielectric constant (with cutoff). For e '=  0 the dielectric constant estimates 
increase (on average) with cutoff radius, with estimates being 20 % low for 
Rc<8 (half the system size). For e '=  11.72 and oe, A2(e';R~, oo) is less 
than 10 % for R~ > 8. 

[3,s r 

L 
I 

Z ~ 3"2 I 

z 0 ' I 
! 

g 
. 0 i ~ - -  

o 

cd 
-[3-1 

0.34 - , ~ . ,  ~. ~ . ,  ; . ,  i , ]~.  ,i1 I. ; , 3. 'l~, '13. 'l). '1~. ,5 
C u t ' o ~ f  R ~ J i u s  R c 

(a) 

Fig. 4. 

0.3  

0 . 2 -  

Z 

�9 0,1 -- 
o 

g 
. 9 , 8  - -  

:x_  

<~ -011 

- 0 . 2 ~  

I 0.3~. , ;. ' ; .  ~ .  ~ .  'J.  '1;. '11'. 'I~. ,~. 'lL 1~. IL 
C u t o f f  R e d ; u s  R c 

(b) 
Graphs of A2(e'; Re, oo) versus R c at different values of e' using the M a M  g-factor. 

(a) e ' =  1.0, (b) e' = 11.72. 
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c 

[1, i c_ 
o 

o 
a E  

a ;  
- 3 . 1  

v VV ' 

_0~ ; . , L  i. ~ , ~ , , ~ ,  i_ i 
�9 . . ~ .  l l r  1 ~ .  i ~ .  ~;. ~ . ' ~ .  

C u t o f f  R ~ d l u s  R c 

Fig. 5. Graph of A2(~';  R c, 09) versus R c at e'= 11.72 using the M~Ma g-factor. 

For  MnM, the approach to the limit is less sensitive to the choice of 
s', only the s ' = 0  estimates differing significantly from the other ~' 
estimates. This observation is important because it implies that it is not 
necessary to know the approximate value of ~ to use this recipe for the 
fluctuation formula. Figure 4 shows the dielectric constant estimates for 
e '=  1 and s ' =  11.72. As in the case of MM, estimates are within 10% for 
Re>8 .  

For  M e R l e ,  the approach to the limit is poor and extremely sensitive 
to the choice of e', which indicates that this route to the dielectric constant 
is indeed as unreliable as its "derivation" suggests. Estimates were poor for 
all values of e', so only the e'---11.72 result (Fig. 5) is presented here. The 
values e' = 0, 1 produced the worst estimates, e' = oo gave marginally better 
estimates, and e'--10.72, 11.72, 12.72 gave the best results, with estimates 
being within 20% for Re>  14 (80% of the system size). 

Nonetheless, both PBC(~') and RF(~', Re) (with M M  or M ~ M )  
produce reasonable estimates for the dielectric constant (within 10%) 
provided N>~ 10 for PBC(~'), or Rc is greater than half the system size and 
lattice side L - 30-35 in the case of RF(e', Re). 

With PBC(~') we can ask which choice of e' gives the most rapid 
convergence to the thermodynamic limit as N increases. The evidence of 
this model suggest that e ' = 0  gives most rapid convergence to the 
thermodynamic limit. We presume that this is because e ' - - 0  supresses 
dipole moment fluctuations. We might expect this to generalize to 
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continuous systems, where the problem has apparently been to ensure 
adequate sampling of the fluctuations. This needs exploration with actual 
simulations of continuous systems in PBC(e'). 

With RF(e', Re) we can ask which choice of e' gives most rapid 
convergence to the limit as Rc ~ ~ .  This is important for large molecular 
systems. It seems that e '=  1 gives the electrostatic response of the cutoff 
sphere most accurately, at least in this model. 
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